\(\int \frac {(g \cos (e+f x))^{3/2}}{(d \sin (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx\) [1419]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [B] (warning: unable to verify)
   Fricas [F(-1)]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 37, antiderivative size = 321 \[ \int \frac {(g \cos (e+f x))^{3/2}}{(d \sin (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx=-\frac {2 \sqrt {2} \sqrt {-a^2+b^2} g^2 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (-\frac {a}{b-\sqrt {-a^2+b^2}},\arcsin \left (\frac {\sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {1+\cos (e+f x)}}\right ),-1\right )}{a^2 d^{3/2} f \sqrt {g \cos (e+f x)}}+\frac {2 \sqrt {2} \sqrt {-a^2+b^2} g^2 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (-\frac {a}{b+\sqrt {-a^2+b^2}},\arcsin \left (\frac {\sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {1+\cos (e+f x)}}\right ),-1\right )}{a^2 d^{3/2} f \sqrt {g \cos (e+f x)}}-\frac {2 g \sqrt {g \cos (e+f x)}}{a d f \sqrt {d \sin (e+f x)}}-\frac {b g^2 \operatorname {EllipticF}\left (e-\frac {\pi }{4}+f x,2\right ) \sqrt {\sin (2 e+2 f x)}}{a^2 d f \sqrt {g \cos (e+f x)} \sqrt {d \sin (e+f x)}} \]

[Out]

-2*g^2*EllipticPi((d*sin(f*x+e))^(1/2)/d^(1/2)/(1+cos(f*x+e))^(1/2),-a/(b-(-a^2+b^2)^(1/2)),I)*2^(1/2)*(-a^2+b
^2)^(1/2)*cos(f*x+e)^(1/2)/a^2/d^(3/2)/f/(g*cos(f*x+e))^(1/2)+2*g^2*EllipticPi((d*sin(f*x+e))^(1/2)/d^(1/2)/(1
+cos(f*x+e))^(1/2),-a/(b+(-a^2+b^2)^(1/2)),I)*2^(1/2)*(-a^2+b^2)^(1/2)*cos(f*x+e)^(1/2)/a^2/d^(3/2)/f/(g*cos(f
*x+e))^(1/2)-2*g*(g*cos(f*x+e))^(1/2)/a/d/f/(d*sin(f*x+e))^(1/2)+b*g^2*(sin(e+1/4*Pi+f*x)^2)^(1/2)/sin(e+1/4*P
i+f*x)*EllipticF(cos(e+1/4*Pi+f*x),2^(1/2))*sin(2*f*x+2*e)^(1/2)/a^2/d/f/(g*cos(f*x+e))^(1/2)/(d*sin(f*x+e))^(
1/2)

Rubi [A] (verified)

Time = 0.46 (sec) , antiderivative size = 321, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.189, Rules used = {2978, 2643, 2653, 2720, 2987, 2986, 1232} \[ \int \frac {(g \cos (e+f x))^{3/2}}{(d \sin (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx=-\frac {2 \sqrt {2} g^2 \sqrt {b^2-a^2} \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (-\frac {a}{b-\sqrt {b^2-a^2}},\arcsin \left (\frac {\sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {\cos (e+f x)+1}}\right ),-1\right )}{a^2 d^{3/2} f \sqrt {g \cos (e+f x)}}+\frac {2 \sqrt {2} g^2 \sqrt {b^2-a^2} \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (-\frac {a}{b+\sqrt {b^2-a^2}},\arcsin \left (\frac {\sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {\cos (e+f x)+1}}\right ),-1\right )}{a^2 d^{3/2} f \sqrt {g \cos (e+f x)}}-\frac {b g^2 \sqrt {\sin (2 e+2 f x)} \operatorname {EllipticF}\left (e+f x-\frac {\pi }{4},2\right )}{a^2 d f \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}-\frac {2 g \sqrt {g \cos (e+f x)}}{a d f \sqrt {d \sin (e+f x)}} \]

[In]

Int[(g*Cos[e + f*x])^(3/2)/((d*Sin[e + f*x])^(3/2)*(a + b*Sin[e + f*x])),x]

[Out]

(-2*Sqrt[2]*Sqrt[-a^2 + b^2]*g^2*Sqrt[Cos[e + f*x]]*EllipticPi[-(a/(b - Sqrt[-a^2 + b^2])), ArcSin[Sqrt[d*Sin[
e + f*x]]/(Sqrt[d]*Sqrt[1 + Cos[e + f*x]])], -1])/(a^2*d^(3/2)*f*Sqrt[g*Cos[e + f*x]]) + (2*Sqrt[2]*Sqrt[-a^2
+ b^2]*g^2*Sqrt[Cos[e + f*x]]*EllipticPi[-(a/(b + Sqrt[-a^2 + b^2])), ArcSin[Sqrt[d*Sin[e + f*x]]/(Sqrt[d]*Sqr
t[1 + Cos[e + f*x]])], -1])/(a^2*d^(3/2)*f*Sqrt[g*Cos[e + f*x]]) - (2*g*Sqrt[g*Cos[e + f*x]])/(a*d*f*Sqrt[d*Si
n[e + f*x]]) - (b*g^2*EllipticF[e - Pi/4 + f*x, 2]*Sqrt[Sin[2*e + 2*f*x]])/(a^2*d*f*Sqrt[g*Cos[e + f*x]]*Sqrt[
d*Sin[e + f*x]])

Rule 1232

Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[{q = Rt[-c/a, 4]}, Simp[(1/(d*Sqrt[
a]*q))*EllipticPi[-e/(d*q^2), ArcSin[q*x], -1], x]] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] && GtQ[a, 0]

Rule 2643

Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(n_.)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Simp[(a*Sin[e +
f*x])^(m + 1)*((b*Cos[e + f*x])^(n + 1)/(a*b*f*(m + 1))), x] /; FreeQ[{a, b, e, f, m, n}, x] && EqQ[m + n + 2,
 0] && NeQ[m, -1]

Rule 2653

Int[1/(Sqrt[cos[(e_.) + (f_.)*(x_)]*(b_.)]*Sqrt[(a_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[Sqrt[Sin[2*
e + 2*f*x]]/(Sqrt[a*Sin[e + f*x]]*Sqrt[b*Cos[e + f*x]]), Int[1/Sqrt[Sin[2*e + 2*f*x]], x], x] /; FreeQ[{a, b,
e, f}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2978

Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_))/((a_) + (b_.)*sin[(e_.) + (f_.
)*(x_)]), x_Symbol] :> Dist[g^2/a, Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^n, x], x] + (-Dist[b*(g^2/(a^
2*d)), Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^(n + 1), x], x] - Dist[g^2*((a^2 - b^2)/(a^2*d^2)), Int[(
g*Cos[e + f*x])^(p - 2)*((d*Sin[e + f*x])^(n + 2)/(a + b*Sin[e + f*x])), x], x]) /; FreeQ[{a, b, d, e, f, g},
x] && NeQ[a^2 - b^2, 0] && IntegersQ[2*n, 2*p] && GtQ[p, 1] && (LeQ[n, -2] || (EqQ[n, -3/2] && EqQ[p, 3/2]))

Rule 2986

Int[Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]/(Sqrt[cos[(e_.) + (f_.)*(x_)]]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]))
, x_Symbol] :> With[{q = Rt[-a^2 + b^2, 2]}, Dist[2*Sqrt[2]*d*((b + q)/(f*q)), Subst[Int[1/((d*(b + q) + a*x^2
)*Sqrt[1 - x^4/d^2]), x], x, Sqrt[d*Sin[e + f*x]]/Sqrt[1 + Cos[e + f*x]]], x] - Dist[2*Sqrt[2]*d*((b - q)/(f*q
)), Subst[Int[1/((d*(b - q) + a*x^2)*Sqrt[1 - x^4/d^2]), x], x, Sqrt[d*Sin[e + f*x]]/Sqrt[1 + Cos[e + f*x]]],
x]] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2987

Int[Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]/(Sqrt[cos[(e_.) + (f_.)*(x_)]*(g_.)]*((a_) + (b_.)*sin[(e_.) + (f_.)*(
x_)])), x_Symbol] :> Dist[Sqrt[Cos[e + f*x]]/Sqrt[g*Cos[e + f*x]], Int[Sqrt[d*Sin[e + f*x]]/(Sqrt[Cos[e + f*x]
]*(a + b*Sin[e + f*x])), x], x] /; FreeQ[{a, b, d, e, f, g}, x] && NeQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {g^2 \int \frac {1}{\sqrt {g \cos (e+f x)} (d \sin (e+f x))^{3/2}} \, dx}{a}-\frac {\left (\left (a^2-b^2\right ) g^2\right ) \int \frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))} \, dx}{a^2 d^2}-\frac {\left (b g^2\right ) \int \frac {1}{\sqrt {g \cos (e+f x)} \sqrt {d \sin (e+f x)}} \, dx}{a^2 d} \\ & = -\frac {2 g \sqrt {g \cos (e+f x)}}{a d f \sqrt {d \sin (e+f x)}}-\frac {\left (\left (a^2-b^2\right ) g^2 \sqrt {\cos (e+f x)}\right ) \int \frac {\sqrt {d \sin (e+f x)}}{\sqrt {\cos (e+f x)} (a+b \sin (e+f x))} \, dx}{a^2 d^2 \sqrt {g \cos (e+f x)}}-\frac {\left (b g^2 \sqrt {\sin (2 e+2 f x)}\right ) \int \frac {1}{\sqrt {\sin (2 e+2 f x)}} \, dx}{a^2 d \sqrt {g \cos (e+f x)} \sqrt {d \sin (e+f x)}} \\ & = -\frac {2 g \sqrt {g \cos (e+f x)}}{a d f \sqrt {d \sin (e+f x)}}-\frac {b g^2 \operatorname {EllipticF}\left (e-\frac {\pi }{4}+f x,2\right ) \sqrt {\sin (2 e+2 f x)}}{a^2 d f \sqrt {g \cos (e+f x)} \sqrt {d \sin (e+f x)}}-\frac {\left (2 \sqrt {2} \left (a^2-b^2\right ) \left (1-\frac {b}{\sqrt {-a^2+b^2}}\right ) g^2 \sqrt {\cos (e+f x)}\right ) \text {Subst}\left (\int \frac {1}{\left (\left (b-\sqrt {-a^2+b^2}\right ) d+a x^2\right ) \sqrt {1-\frac {x^4}{d^2}}} \, dx,x,\frac {\sqrt {d \sin (e+f x)}}{\sqrt {1+\cos (e+f x)}}\right )}{a^2 d f \sqrt {g \cos (e+f x)}}-\frac {\left (2 \sqrt {2} \left (a^2-b^2\right ) \left (1+\frac {b}{\sqrt {-a^2+b^2}}\right ) g^2 \sqrt {\cos (e+f x)}\right ) \text {Subst}\left (\int \frac {1}{\left (\left (b+\sqrt {-a^2+b^2}\right ) d+a x^2\right ) \sqrt {1-\frac {x^4}{d^2}}} \, dx,x,\frac {\sqrt {d \sin (e+f x)}}{\sqrt {1+\cos (e+f x)}}\right )}{a^2 d f \sqrt {g \cos (e+f x)}} \\ & = -\frac {2 \sqrt {2} \sqrt {-a^2+b^2} g^2 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (-\frac {a}{b-\sqrt {-a^2+b^2}},\arcsin \left (\frac {\sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {1+\cos (e+f x)}}\right ),-1\right )}{a^2 d^{3/2} f \sqrt {g \cos (e+f x)}}+\frac {2 \sqrt {2} \sqrt {-a^2+b^2} g^2 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (-\frac {a}{b+\sqrt {-a^2+b^2}},\arcsin \left (\frac {\sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {1+\cos (e+f x)}}\right ),-1\right )}{a^2 d^{3/2} f \sqrt {g \cos (e+f x)}}-\frac {2 g \sqrt {g \cos (e+f x)}}{a d f \sqrt {d \sin (e+f x)}}-\frac {b g^2 \operatorname {EllipticF}\left (e-\frac {\pi }{4}+f x,2\right ) \sqrt {\sin (2 e+2 f x)}}{a^2 d f \sqrt {g \cos (e+f x)} \sqrt {d \sin (e+f x)}} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 18.55 (sec) , antiderivative size = 1095, normalized size of antiderivative = 3.41 \[ \int \frac {(g \cos (e+f x))^{3/2}}{(d \sin (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx=-\frac {2 (g \cos (e+f x))^{3/2} \tan (e+f x)}{a f (d \sin (e+f x))^{3/2}}-\frac {(g \cos (e+f x))^{3/2} \sin ^{\frac {3}{2}}(e+f x) \left (-\frac {2 b \left (a+b \sqrt {1-\cos ^2(e+f x)}\right ) \left (\frac {5 a \left (a^2-b^2\right ) \operatorname {AppellF1}\left (\frac {1}{4},\frac {3}{4},1,\frac {5}{4},\cos ^2(e+f x),\frac {b^2 \cos ^2(e+f x)}{-a^2+b^2}\right ) \sqrt {\cos (e+f x)}}{\left (1-\cos ^2(e+f x)\right )^{3/4} \left (5 \left (a^2-b^2\right ) \operatorname {AppellF1}\left (\frac {1}{4},\frac {3}{4},1,\frac {5}{4},\cos ^2(e+f x),\frac {b^2 \cos ^2(e+f x)}{-a^2+b^2}\right )+\left (-4 b^2 \operatorname {AppellF1}\left (\frac {5}{4},\frac {3}{4},2,\frac {9}{4},\cos ^2(e+f x),\frac {b^2 \cos ^2(e+f x)}{-a^2+b^2}\right )+3 \left (a^2-b^2\right ) \operatorname {AppellF1}\left (\frac {5}{4},\frac {7}{4},1,\frac {9}{4},\cos ^2(e+f x),\frac {b^2 \cos ^2(e+f x)}{-a^2+b^2}\right )\right ) \cos ^2(e+f x)\right ) \left (a^2+b^2 \left (-1+\cos ^2(e+f x)\right )\right )}-\frac {\left (\frac {1}{8}-\frac {i}{8}\right ) b \left (2 \arctan \left (1-\frac {(1+i) \sqrt {a} \sqrt {\cos (e+f x)}}{\sqrt [4]{-a^2+b^2} \sqrt [4]{-1+\cos ^2(e+f x)}}\right )-2 \arctan \left (1+\frac {(1+i) \sqrt {a} \sqrt {\cos (e+f x)}}{\sqrt [4]{-a^2+b^2} \sqrt [4]{-1+\cos ^2(e+f x)}}\right )+\log \left (\sqrt {-a^2+b^2}+\frac {i a \cos (e+f x)}{\sqrt {-1+\cos ^2(e+f x)}}-\frac {(1+i) \sqrt {a} \sqrt [4]{-a^2+b^2} \sqrt {\cos (e+f x)}}{\sqrt [4]{-1+\cos ^2(e+f x)}}\right )-\log \left (\sqrt {-a^2+b^2}+\frac {i a \cos (e+f x)}{\sqrt {-1+\cos ^2(e+f x)}}+\frac {(1+i) \sqrt {a} \sqrt [4]{-a^2+b^2} \sqrt {\cos (e+f x)}}{\sqrt [4]{-1+\cos ^2(e+f x)}}\right )\right )}{\sqrt {a} \left (-a^2+b^2\right )^{3/4}}\right ) \sqrt {\sin (e+f x)}}{\sqrt [4]{1-\cos ^2(e+f x)} (a+b \sin (e+f x))}+\frac {2 a \sqrt {\sin (e+f x)} \left (\frac {\sqrt {a} \left (-2 \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{a^2-b^2} \sqrt {\tan (e+f x)}}{\sqrt {a}}\right )+2 \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{a^2-b^2} \sqrt {\tan (e+f x)}}{\sqrt {a}}\right )+\log \left (-a+\sqrt {2} \sqrt {a} \sqrt [4]{a^2-b^2} \sqrt {\tan (e+f x)}-\sqrt {a^2-b^2} \tan (e+f x)\right )-\log \left (a+\sqrt {2} \sqrt {a} \sqrt [4]{a^2-b^2} \sqrt {\tan (e+f x)}+\sqrt {a^2-b^2} \tan (e+f x)\right )\right )}{4 \sqrt {2} \left (a^2-b^2\right )^{3/4}}-\frac {b \operatorname {AppellF1}\left (\frac {5}{4},\frac {1}{2},1,\frac {9}{4},-\tan ^2(e+f x),\frac {\left (-a^2+b^2\right ) \tan ^2(e+f x)}{a^2}\right ) \tan ^{\frac {5}{2}}(e+f x)}{5 a^2}\right ) \left (b \tan (e+f x)+a \sqrt {1+\tan ^2(e+f x)}\right )}{\cos ^{\frac {5}{2}}(e+f x) (a+b \sin (e+f x)) \sqrt {\tan (e+f x)} \left (1+\tan ^2(e+f x)\right )^{3/2}}\right )}{a f \cos ^{\frac {3}{2}}(e+f x) (d \sin (e+f x))^{3/2}} \]

[In]

Integrate[(g*Cos[e + f*x])^(3/2)/((d*Sin[e + f*x])^(3/2)*(a + b*Sin[e + f*x])),x]

[Out]

(-2*(g*Cos[e + f*x])^(3/2)*Tan[e + f*x])/(a*f*(d*Sin[e + f*x])^(3/2)) - ((g*Cos[e + f*x])^(3/2)*Sin[e + f*x]^(
3/2)*((-2*b*(a + b*Sqrt[1 - Cos[e + f*x]^2])*((5*a*(a^2 - b^2)*AppellF1[1/4, 3/4, 1, 5/4, Cos[e + f*x]^2, (b^2
*Cos[e + f*x]^2)/(-a^2 + b^2)]*Sqrt[Cos[e + f*x]])/((1 - Cos[e + f*x]^2)^(3/4)*(5*(a^2 - b^2)*AppellF1[1/4, 3/
4, 1, 5/4, Cos[e + f*x]^2, (b^2*Cos[e + f*x]^2)/(-a^2 + b^2)] + (-4*b^2*AppellF1[5/4, 3/4, 2, 9/4, Cos[e + f*x
]^2, (b^2*Cos[e + f*x]^2)/(-a^2 + b^2)] + 3*(a^2 - b^2)*AppellF1[5/4, 7/4, 1, 9/4, Cos[e + f*x]^2, (b^2*Cos[e
+ f*x]^2)/(-a^2 + b^2)])*Cos[e + f*x]^2)*(a^2 + b^2*(-1 + Cos[e + f*x]^2))) - ((1/8 - I/8)*b*(2*ArcTan[1 - ((1
 + I)*Sqrt[a]*Sqrt[Cos[e + f*x]])/((-a^2 + b^2)^(1/4)*(-1 + Cos[e + f*x]^2)^(1/4))] - 2*ArcTan[1 + ((1 + I)*Sq
rt[a]*Sqrt[Cos[e + f*x]])/((-a^2 + b^2)^(1/4)*(-1 + Cos[e + f*x]^2)^(1/4))] + Log[Sqrt[-a^2 + b^2] + (I*a*Cos[
e + f*x])/Sqrt[-1 + Cos[e + f*x]^2] - ((1 + I)*Sqrt[a]*(-a^2 + b^2)^(1/4)*Sqrt[Cos[e + f*x]])/(-1 + Cos[e + f*
x]^2)^(1/4)] - Log[Sqrt[-a^2 + b^2] + (I*a*Cos[e + f*x])/Sqrt[-1 + Cos[e + f*x]^2] + ((1 + I)*Sqrt[a]*(-a^2 +
b^2)^(1/4)*Sqrt[Cos[e + f*x]])/(-1 + Cos[e + f*x]^2)^(1/4)]))/(Sqrt[a]*(-a^2 + b^2)^(3/4)))*Sqrt[Sin[e + f*x]]
)/((1 - Cos[e + f*x]^2)^(1/4)*(a + b*Sin[e + f*x])) + (2*a*Sqrt[Sin[e + f*x]]*((Sqrt[a]*(-2*ArcTan[1 - (Sqrt[2
]*(a^2 - b^2)^(1/4)*Sqrt[Tan[e + f*x]])/Sqrt[a]] + 2*ArcTan[1 + (Sqrt[2]*(a^2 - b^2)^(1/4)*Sqrt[Tan[e + f*x]])
/Sqrt[a]] + Log[-a + Sqrt[2]*Sqrt[a]*(a^2 - b^2)^(1/4)*Sqrt[Tan[e + f*x]] - Sqrt[a^2 - b^2]*Tan[e + f*x]] - Lo
g[a + Sqrt[2]*Sqrt[a]*(a^2 - b^2)^(1/4)*Sqrt[Tan[e + f*x]] + Sqrt[a^2 - b^2]*Tan[e + f*x]]))/(4*Sqrt[2]*(a^2 -
 b^2)^(3/4)) - (b*AppellF1[5/4, 1/2, 1, 9/4, -Tan[e + f*x]^2, ((-a^2 + b^2)*Tan[e + f*x]^2)/a^2]*Tan[e + f*x]^
(5/2))/(5*a^2))*(b*Tan[e + f*x] + a*Sqrt[1 + Tan[e + f*x]^2]))/(Cos[e + f*x]^(5/2)*(a + b*Sin[e + f*x])*Sqrt[T
an[e + f*x]]*(1 + Tan[e + f*x]^2)^(3/2))))/(a*f*Cos[e + f*x]^(3/2)*(d*Sin[e + f*x])^(3/2))

Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(1783\) vs. \(2(299)=598\).

Time = 1.60 (sec) , antiderivative size = 1784, normalized size of antiderivative = 5.56

method result size
default \(\text {Expression too large to display}\) \(1784\)

[In]

int((g*cos(f*x+e))^(3/2)/(d*sin(f*x+e))^(3/2)/(a+b*sin(f*x+e)),x,method=_RETURNVERBOSE)

[Out]

1/f*csc(f*x+e)/(d/((1-cos(f*x+e))^2*csc(f*x+e)^2+1)*(csc(f*x+e)-cot(f*x+e)))^(3/2)*(1-cos(f*x+e))*(-g*((1-cos(
f*x+e))^2*csc(f*x+e)^2-1)/((1-cos(f*x+e))^2*csc(f*x+e)^2+1))^(3/2)*(2*EllipticF((-cot(f*x+e)+csc(f*x+e)+1)^(1/
2),1/2*2^(1/2))*a*b*(-a^2+b^2)^(1/2)*(-cot(f*x+e)+csc(f*x+e)+1)^(1/2)*(2+2*cot(f*x+e)-2*csc(f*x+e))^(1/2)*(-cs
c(f*x+e)+cot(f*x+e))^(1/2)-2*EllipticF((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),1/2*2^(1/2))*b^2*(-a^2+b^2)^(1/2)*(-co
t(f*x+e)+csc(f*x+e)+1)^(1/2)*(2+2*cot(f*x+e)-2*csc(f*x+e))^(1/2)*(-csc(f*x+e)+cot(f*x+e))^(1/2)-EllipticPi((-c
ot(f*x+e)+csc(f*x+e)+1)^(1/2),a/(-b+(-a^2+b^2)^(1/2)+a),1/2*2^(1/2))*a^3*(-cot(f*x+e)+csc(f*x+e)+1)^(1/2)*(2+2
*cot(f*x+e)-2*csc(f*x+e))^(1/2)*(-csc(f*x+e)+cot(f*x+e))^(1/2)+EllipticPi((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),a/(
-b+(-a^2+b^2)^(1/2)+a),1/2*2^(1/2))*a^2*b*(-cot(f*x+e)+csc(f*x+e)+1)^(1/2)*(2+2*cot(f*x+e)-2*csc(f*x+e))^(1/2)
*(-csc(f*x+e)+cot(f*x+e))^(1/2)-EllipticPi((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),a/(-b+(-a^2+b^2)^(1/2)+a),1/2*2^(1
/2))*a^2*(-a^2+b^2)^(1/2)*(-cot(f*x+e)+csc(f*x+e)+1)^(1/2)*(2+2*cot(f*x+e)-2*csc(f*x+e))^(1/2)*(-csc(f*x+e)+co
t(f*x+e))^(1/2)+EllipticPi((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),a/(-b+(-a^2+b^2)^(1/2)+a),1/2*2^(1/2))*a*b^2*(-cot
(f*x+e)+csc(f*x+e)+1)^(1/2)*(2+2*cot(f*x+e)-2*csc(f*x+e))^(1/2)*(-csc(f*x+e)+cot(f*x+e))^(1/2)-EllipticPi((-co
t(f*x+e)+csc(f*x+e)+1)^(1/2),a/(-b+(-a^2+b^2)^(1/2)+a),1/2*2^(1/2))*b^3*(-cot(f*x+e)+csc(f*x+e)+1)^(1/2)*(2+2*
cot(f*x+e)-2*csc(f*x+e))^(1/2)*(-csc(f*x+e)+cot(f*x+e))^(1/2)+EllipticPi((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),a/(-
b+(-a^2+b^2)^(1/2)+a),1/2*2^(1/2))*b^2*(-a^2+b^2)^(1/2)*(-cot(f*x+e)+csc(f*x+e)+1)^(1/2)*(2+2*cot(f*x+e)-2*csc
(f*x+e))^(1/2)*(-csc(f*x+e)+cot(f*x+e))^(1/2)+EllipticPi((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),-a/(b+(-a^2+b^2)^(1/
2)-a),1/2*2^(1/2))*a^3*(-cot(f*x+e)+csc(f*x+e)+1)^(1/2)*(2+2*cot(f*x+e)-2*csc(f*x+e))^(1/2)*(-csc(f*x+e)+cot(f
*x+e))^(1/2)-EllipticPi((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),-a/(b+(-a^2+b^2)^(1/2)-a),1/2*2^(1/2))*a^2*b*(-cot(f*
x+e)+csc(f*x+e)+1)^(1/2)*(2+2*cot(f*x+e)-2*csc(f*x+e))^(1/2)*(-csc(f*x+e)+cot(f*x+e))^(1/2)-EllipticPi((-cot(f
*x+e)+csc(f*x+e)+1)^(1/2),-a/(b+(-a^2+b^2)^(1/2)-a),1/2*2^(1/2))*a^2*(-a^2+b^2)^(1/2)*(-cot(f*x+e)+csc(f*x+e)+
1)^(1/2)*(2+2*cot(f*x+e)-2*csc(f*x+e))^(1/2)*(-csc(f*x+e)+cot(f*x+e))^(1/2)-EllipticPi((-cot(f*x+e)+csc(f*x+e)
+1)^(1/2),-a/(b+(-a^2+b^2)^(1/2)-a),1/2*2^(1/2))*a*b^2*(-cot(f*x+e)+csc(f*x+e)+1)^(1/2)*(2+2*cot(f*x+e)-2*csc(
f*x+e))^(1/2)*(-csc(f*x+e)+cot(f*x+e))^(1/2)+EllipticPi((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),-a/(b+(-a^2+b^2)^(1/2
)-a),1/2*2^(1/2))*b^3*(-cot(f*x+e)+csc(f*x+e)+1)^(1/2)*(2+2*cot(f*x+e)-2*csc(f*x+e))^(1/2)*(-csc(f*x+e)+cot(f*
x+e))^(1/2)+EllipticPi((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),-a/(b+(-a^2+b^2)^(1/2)-a),1/2*2^(1/2))*b^2*(-a^2+b^2)^
(1/2)*(-cot(f*x+e)+csc(f*x+e)+1)^(1/2)*(2+2*cot(f*x+e)-2*csc(f*x+e))^(1/2)*(-csc(f*x+e)+cot(f*x+e))^(1/2)-2*cs
c(f*x+e)^2*a^2*(-a^2+b^2)^(1/2)*(1-cos(f*x+e))^2+2*csc(f*x+e)^2*a*b*(-a^2+b^2)^(1/2)*(1-cos(f*x+e))^2+2*a^2*(-
a^2+b^2)^(1/2)-2*a*b*(-a^2+b^2)^(1/2))/((1-cos(f*x+e))^2*csc(f*x+e)^2-1)^2*2^(1/2)/a/(-a^2+b^2)^(1/2)/(-b+(-a^
2+b^2)^(1/2)+a)/(b+(-a^2+b^2)^(1/2)-a)

Fricas [F(-1)]

Timed out. \[ \int \frac {(g \cos (e+f x))^{3/2}}{(d \sin (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx=\text {Timed out} \]

[In]

integrate((g*cos(f*x+e))^(3/2)/(d*sin(f*x+e))^(3/2)/(a+b*sin(f*x+e)),x, algorithm="fricas")

[Out]

Timed out

Sympy [F]

\[ \int \frac {(g \cos (e+f x))^{3/2}}{(d \sin (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx=\int \frac {\left (g \cos {\left (e + f x \right )}\right )^{\frac {3}{2}}}{\left (d \sin {\left (e + f x \right )}\right )^{\frac {3}{2}} \left (a + b \sin {\left (e + f x \right )}\right )}\, dx \]

[In]

integrate((g*cos(f*x+e))**(3/2)/(d*sin(f*x+e))**(3/2)/(a+b*sin(f*x+e)),x)

[Out]

Integral((g*cos(e + f*x))**(3/2)/((d*sin(e + f*x))**(3/2)*(a + b*sin(e + f*x))), x)

Maxima [F]

\[ \int \frac {(g \cos (e+f x))^{3/2}}{(d \sin (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx=\int { \frac {\left (g \cos \left (f x + e\right )\right )^{\frac {3}{2}}}{{\left (b \sin \left (f x + e\right ) + a\right )} \left (d \sin \left (f x + e\right )\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((g*cos(f*x+e))^(3/2)/(d*sin(f*x+e))^(3/2)/(a+b*sin(f*x+e)),x, algorithm="maxima")

[Out]

integrate((g*cos(f*x + e))^(3/2)/((b*sin(f*x + e) + a)*(d*sin(f*x + e))^(3/2)), x)

Giac [F]

\[ \int \frac {(g \cos (e+f x))^{3/2}}{(d \sin (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx=\int { \frac {\left (g \cos \left (f x + e\right )\right )^{\frac {3}{2}}}{{\left (b \sin \left (f x + e\right ) + a\right )} \left (d \sin \left (f x + e\right )\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((g*cos(f*x+e))^(3/2)/(d*sin(f*x+e))^(3/2)/(a+b*sin(f*x+e)),x, algorithm="giac")

[Out]

integrate((g*cos(f*x + e))^(3/2)/((b*sin(f*x + e) + a)*(d*sin(f*x + e))^(3/2)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(g \cos (e+f x))^{3/2}}{(d \sin (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx=\int \frac {{\left (g\,\cos \left (e+f\,x\right )\right )}^{3/2}}{{\left (d\,\sin \left (e+f\,x\right )\right )}^{3/2}\,\left (a+b\,\sin \left (e+f\,x\right )\right )} \,d x \]

[In]

int((g*cos(e + f*x))^(3/2)/((d*sin(e + f*x))^(3/2)*(a + b*sin(e + f*x))),x)

[Out]

int((g*cos(e + f*x))^(3/2)/((d*sin(e + f*x))^(3/2)*(a + b*sin(e + f*x))), x)